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Available at: http://www.pmf.ni.ac.rs/filomat

Minimum Norm Least-Squares Solution to General Complex
Coupled Linear Matrix Equations via Iteration

Davod Khojasteh Salkuyeha, Fatemeh Panjeh Ali Beikb

aFaculty of Mathematical Sciences, University of Guilan, Rasht, Iran
bDepartment of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract. This paper deals with the problem of finding the minimum norm least-squares solution of a
quite general class of coupled linear matrix equations defined over field of complex numbers. To this
end, we examine a gradient-based approach and present the convergence properties of the algorithm. The
highlight of the elaborated results in the current work is using a new sight of view for construction of
the gradient-based algorithm which turns out that we can ignore some of the limitations assumed by the
authors in the recently published works for the application of the algorithm to obtain the solution of the
referred problems. To the best of our knowledge, so far, computing the optimal convergence factor of
the algorithm to determine the (least-squares) solution of general complex linear matrix equations has left
as a project to be investigated. In the current work, we determine the optimal convergence factor of the
algorithm. Some numerical experiments are reported to illustrate the validity of the presented results.

1. Introduction and Preliminaries

Throughout this paper, we use tr(A),AT,A,AH,N(A) to represent the trace, the transpose, the conjugate,
the conjugate transpose and the null space of the matrix A, respectively. Furthermore, Cm×n denotes the set
of all m × n complex matrices. For an arbitrary complex number z, the real and imaginary parts of z are
indicated by Re(z) and Im(z), respectively. For an arbitrary n×p complex matrix A = [ai j], the matrices Re(A)
and Im(A) are n × p real matrices specified by Re(A) = [Re(ai j)] and Im(A) = [Im(ai j)]. For a given matrix
X ∈ Cn×p, the notation vec(X) stands for a vector of dimension np obtained by stacking the columns of the
matrix X. If X = vec(X), then we define unvec(X) so that X = unvec(X). For an arbitrary square matrix Z,
the symbols ρ(Z) and σ(Z) represent the spectral radius and the spectrum of the matrix of Z, respectively.
For two given matrices X ∈ Cn×p and Y ∈ Cq×l, the Kronecker product X⊗Y is the nq× pl matrix determined
by X ⊗ Y = [Xi, jY]. In this paper, the following relation is utilized (See [5])

vec(AXB) = (BT
⊗ A)vec(X),

in which A,B and X are given matrices with proper dimensions defined over field of complex (real) numbers.
For a given matrices Y ∈ Cn×p, the well-known Frobenius norm is given by ‖Y‖2 = Re(tr(YHY)). As a natural
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extension, the norm of X = (X1,X2, . . . ,Xp) where Xi ∈ Cni×mi for i = 1, 2, . . . , p is defined by

‖X‖2 =
∥∥∥X1

∥∥∥2
+

∥∥∥X2

∥∥∥2
+ . . . +

∥∥∥Xp

∥∥∥2
.

The following result can be deduced by referring to Al-Zhour and Kilicman’s work [1]; for more details
see [22].

Lemma 1.1. Let X ∈ Rm×n be an arbitrary matrix. Then

vec(XT) = P(m,n)vec(X),

where P(m,n) = (ET
ij) ∈ R

(mn)×(mn) in which Ei j for i = 1, 2, . . . ,m and j = 1, 2, . . . ,n is an m × n matrix with the
element at position (i, j) being one and the others being zero.

The proof of the next theorem can be found in [6].

Theorem 1.2. Assume that positive integers m,n, p and q are given and let P(p,m) and P(n, q) be defined as
before. Then, B ⊗ A = P(m, p)T(A ⊗ B)P(n, q) for all A ∈ Rm×n and B ∈ Rp×q. Moreover, P(m,n) is unitary and
P(m,n) = P(n,m)T.

Consider the following coupled linear matrix equations

p∑
i=1

(
A`iXiB`i + C`iXT

i D`i + M`iXiN`i + H`iXH
i G`i

)
= F`, (1.1)

in which A`i ∈ Cr`×ni ,B`i ∈ Cmi×k` , C`i ∈ Cr`×mi ,D`i ∈ Cni×k` ,M`i ∈ Cr`×ni , N`i ∈ Cmi×k` ,H`i ∈ Cr`×mi ,G`i ∈ Cni×k`

and F` ∈ Cr`×k` (` = 1, 2, . . . ,N) are given matrices.
Linear matrix equations play a cardinal role in control theory, signal processing, model reduction, image

restoration, filtering theory for continuous or discrete-time large-scale dynamical systems, decoupling
techniques for ordinary and partial differential equations, implementation of implicit numerical methods
for ordinary differential equations, and block-diagonalization of matrices; for further details see [8, 9] and
the references therein.

In the literature, the performance of several iterative methods to find (least-squares) solution of the
(in)consistent linear matrix equations have been examined widely; for instance see [2, 3, 7–14, 16, 18, 19, 21–
31] and the references therein. Most of the earlier cited works have been utilized the gradient-based
approaches to resolve their mentioned problems. However, there is two kinds of restrictions in these
works. Some of the refereed papers apply the gradient-based algorithms to obtain the solution of consistent
(coupled) linear matrix equations as their main problem, the restriction in these works is the assumption
that the mentioned problem has a unique solution. In other cited works, the gradient-based algorithms
are exploited to find the solution of the least-squares problems corresponding to inconsistent (coupled)
linear matrix equations. In these works, the authors first consider an equivalent least-squares problem
associated with a linear system by using the “vec(.)” operator. The reduction in hypothesis of these works
is that the coefficient matrix of the obtained linear system is supposed to be a full row (column) rank
matrix. The limitations mentioned in these works motivate us to study the convergence of the gradient-
based iterative algorithm in a such way that these curtailments can be ignored. To this end, we focus on
the coupled linear matrix equations (1.1) which are entirely general and incorporate many of the recently
mentioned (coupled) linear matrix equations. In addition, the optimal convergence factor of the gradient-
based iterative algorithm for solving the mentioned problems is derived which has not been investigated
so far.

In the sequel, we first reformulate (1.1) for more clarity. Afterwards, we briefly review some of the
recently published research papers which their subjects are relevant to the current paper. In addition, we
momentarily state our main contribution and shortly describe the outline of the rest of the paper. At the
end of this section, the main problems are formulated.
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For simplicity, we consider the linear operatorA(X) which specified as follows:

A : Cn1×m1 × Cn2×m2 × . . . × Cnp×mp → Cr1×k1 × Cr2×k2 × . . . × CrN×kN ,

X = (X1,X2, . . . ,Xp) 7→ A(X) := (A1(X),A2(X), . . . ,AN(X)),

where

A`(X) =

p∑
i=1

(
A`iXiB`i + C`iXT

i D`i + M`iXiN`i + H`iXH
i G`i

)
, ` = 1, 2, . . . ,N.

Thence, the coupled linear matrix equations (1.1) can be rewritten by

A(X) = F, (1.2)

in which F = (F1,F2, . . . ,FN).
We would like to comment here that Eq. (1.1) is very general and contains many of the recently

investigated (coupled) linear matrix equations. For instance, Wu et al. [24] have focused on the following
coupled Sylvester-conjugate matrix equations

q∑
j=1

(Ai jX jBi j + Ci jX jDi j) = Fi, i = 1, 2, . . . , p.

In the case that the above coupled linear matrix equations have a unique solution the gradient-based method
is applied to solve it. In [22], the authors have offered the gradient-based method to solve the following
coupled Sylvester-transpose matrix equations

q∑
j=1

(Ai jX jBi j + Ci jXT
j Di j) = Fi, i = 1, 2, . . . , p,

under the assumption that the mentioned coupled linear matrix equations have a unique solution.
In [7], Dehghan and Hajarian have focused on the following coupled linear matrix equations{

A1XB1 + C1XTD1 = M1
A2XB2 + C2XTD2 = M2

.

Under the hypothesis that the above coupled linear matrix equations have unique (anti-) reflexive solution,
the authors have propounded two gradient-based iterative algorithms for solving the referred coupled
matrix equations over reflexive and anti-reflexive matrices, respectively.

Presume that the subsequent matrix equation

p∑
i=1

AiXBi +

q∑
i=1

CiXTDi = F, (1.3)

where Ai ∈ Rr×m,Bi ∈ Rn×s,Ci ∈ Rr×n,Di ∈ Rm×s,F ∈ Rr×s. Under the assumption that (1.3) has a unique so-
lution, Wang and Liao [23] derived the optimal convergence factor of the gradient-based iterative algorithm
to solve (1.3).

Lately, Hajarian and Dehghan [13] have considered the ensuing coupled linear matrix equations and
examined a gradient-based algorithm

∑̀
t=1

EstYtFst = Gs, s = 1, 2, . . . , `,
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to find the unique generalized reflexive matrix group (Y1,Y2, . . . ,Y`).
More recently, Hajarian [14] has developed a gradient-based iterative algorithm to solve the next coupled

linear matrix equations{
A1X1B1 + C1X2D1 = E1,
A2X1B2 + C2X2D2 = E2,

(1.4)

to obtain the unique solution (X1,X2) where X1 and X2 are the generalized centro-symmetric matrices.
In [29–33], Zhou et al. have offered the gradient-based algorithms to resolve different kinds of (coupled)

matrix equations. As known, the handled algorithms depend on a fixed parameter denoted by µ. In
each of the earlier referred works, Zhou et al. have assumed that the considered problem has a unique
solution. Afterward, a necessary and sufficient condition for the parameter µ has been given under which
the proposed algorithm is convergent to the unique solution of the mentioned problem. Furthermore, the
optimum value for the fixed parameter µ has been derived in these works. The presented results of this
paper turn out that the restriction of the existence of the unique solution can be relaxed when a gradient-
based algorithm is applied for solving (coupled) matrix equations. In addition, it reveals the formula for
obtaining the optimum value of the µ is changed in general situations.

In [16], for computing a minimum norm least squares solution to
r∑

i=1

AiXBi = C,

the authors have focused on the following problem

α = min
X∈Rm×n


∥∥∥∥∥∥∥

r∑
i=1

AiXBi − C

∥∥∥∥∥∥∥
F

 . (1.5)

Exploiting the “vec(.)” operator, an identical problem is mentioned which aims to determine X∗ such that

f (X∗) = min
X∈Rm×n

‖Υvec(X) − vec(C)‖2 ,

in which Υ =
r∑

i=1
(BT

i ⊗ Ai). In the case that (1.5) has a unique solution, a gradient-based algorithm has been

examined. The convergence of the algorithm has been studied for the circumstance that Υ is a full row
(column) rank matrix. The case that Υ is neither of full column rank nor of full row rank has been left as
a project to be investigated. In [28–31], the proposed gradient-based algorithms have been offered under
the duplicate hypothesis mentioned by Li and Wang [16], i.e., the coefficient matrix appears after using the
“vec(.)” operator is assumed to be full rank.

In [17], Li et al. have focused on finding the least norm solution of the following problem

min
X∈Rm×n

∥∥∥∥∥∥∥∥
r∑

i=1

AiXBi +

s∑
j=1

C jXTD j − E

∥∥∥∥∥∥∥∥
F

, (1.6)

where E ∈ Rp×q, Ai ∈ Rp×m, Bi ∈ Rn×q, C j ∈ Rp×n and D j ∈ Rm×q for i = 1, 2, . . . , r and j = 1, 2, . . . , s are known
matrices and X ∈ Rm×n is a matrix to be determined. In order to solve the mentioned problem, the authors
have offered a gradient-based iterative algorithm. For studying the convergence properties of the proposed
algorithm, (1.6) has been transformed to the next problem via the “vec(.)” operator

min
x∈Rmn

‖Υx − vec(E)‖2 ,

where

Υ =

r∑
i=1

(
BT

i ⊗ Ai

)
+

s∑
j=1

(
DT

j ⊗ C j

)
P(m,n) ∈ Rpq×mn,
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in which P(m,n) is a symmetric and unitary matrix satisfying vec(XT) = P(m,n)vec(X). Nevertheless, the
convergence of the algorithm is established under the condition that rank(Υ) = mn, i.e., Υ has full column
rank which is equivalent to say that ΥTΥ is nonsingular. The handled gradient-based algorithm relies on
a fixed parameter, the optimum value of this parameter has been also derived under the assumption that
Υ has full column rank. Here we would like to clarify that beside the fact that our mentioned problem
incorporates the problem considered by Li et al. [17], we relax the restriction of the invertibility of ΥTΥ
and investigate the convergence properties of the gradient-based algorithm for solving our problem. In
addition, it reveals that the optimum value of the fixed parameter of the gradient-based algorithm is derived
with a slightly different formula when Υ has not full column rank.

In the present work, we demonstrate that the gradient-based algorithm can be constructed in an alter-
native way. With the assistance of this new point of view, we capable to study the semi-convergence of
the algorithm. We emphasize that, so far, the gradient-based iterative algorithm for solving (1.1) (and its
special cases) has been presented under the restriction that the mentioned problem has unique solution (or
the coefficient matrix of the linear system corresponding to theses matrix equations obtained after using
“vec(.)” operator is full rank); for further details see [8–12, 28–33] and the reference therein. We show that
under a mild condition the assumed restrictions in the earlier cited works can be disregarded.

The rest of this paper is organized as follows. Before ending this section, we state the main problems.
In Section 2, it has been discussed that how the Richardson iterative method can be applied to obtain the
minimum norm (lease-squares) solution of (in)consistent linear system of equations. As the presented
results in the second section is a complex version of the results which have been recently elaborated by
Salkuyeh and Beik [21], we omit the details and believe that the required generalizations are straightforward.
In Section 3, we demonstrate that the described results in the second section can be exploited to solve our
mentioned problems. Numerical results are given in Section 4 which reveal the validity of the presented
results. Finally, the paper is ended with a brief conclusion in Section 5.

1.1. Problem reformulation
The current paper deals with solution of the following two problems.

Problem I. Suppose that the coupled linear matrix equations (1.2) are consistent. Find the solution X̃ =
(X̃1, X̃2, . . . , X̃p) of (1.2) such that

‖X̃‖ = min{ ‖X‖ | A(X) = F }.

Problem II. Suppose that the coupled linear matrix equations (1.2) are inconsistent. Find X̃ = (X̃1, X̃2, . . . , X̃p)
such that

‖X̃‖ = min{ ‖X̂‖ | X̂ = argmin ‖F −A(X)‖ }.

At the end of this section, we would like to comment that our main contributions are studding the
convergence of the gradient-based algorithm and deriving its best convergence factor to solve Problems I
and II for more general cases which have not been studied so far.

2. Richardson Method for Normal Equations

In this section we give a brief survey on the required theorems and properties. More precisely, we
present an overview of the recently established results by Salkuyeh and Beik [21] which demonstrate the
convergence properties of the Richardson method for solving the normal equations.

Consider the following linear system

Ax = b, (2.1)

where A ∈ Cm×n and b ∈ Cm are given and x ∈ Cn is the unknown. Here, we would like to comment that
the coefficient matrix is not necessarily of full column (row) rank.
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Theorem 2.1. [15, Chapter 8] Suppose that A ∈ Cm×n, b ∈ Cm and

X = { x ∈ Cn
| x = argmin

y∈Cn
‖Ay − b‖2 }.

Then x ∈ X if and only if AHAx = AHb. Moreover, x∗ = A+b is the unique solution of the problem

min
x∈X
‖x‖2,

where A+ is the pseudoinverse of A.

The linear system AHAx = AHb is known as the normal equations. The vector x∗ = A+b in Theorem 2.1 is
called the minimum norm solution.

Remark 2.2. Presume that A ∈ Cm×n and b ∈ Cm. It is known that if x = A+b + y where y ∈ N(A) then the
following two statements hold.

• For the consistent linear system Ax = b, the vector x is a solution of the linear system Ax = b.

• In the case that the linear system Ax = b is not consistent, the vector x is a solution of the least-squares problem
minx∈Cm ‖b − Ax‖2 .

Thence, x∗ is the unique minimum norm solution if and only if x∗ ∈ Range(A+). Invoking the fact that Range (A+) =
Range (AH), we conclude that x∗ is the unique minimum norm solution iff x∗ ∈ Range (AH); for more details see
[15].

Let us apply the Richardson iterative method [20] to solve the normal linear system AHAx = AHb as
follows:

x(k + 1) = x(k) + µAH(b − Ax(k)) = Hx(k) + µAHb, (2.2)

where H = I − µAHA and µ is a positive real number.
Now, we state the ensuing theorem concerning the convergence of the iterative method (2.2). As the

theorem can be established with an analogous strategy applied in [21], we omit its proof.

Theorem 2.3. Assume that

0 < µ <
2

σ2
max(A)

, (2.3)

where σmax is the largest singular value of A. Then, the iterative method (2.2) converges to a solution of the normal
equations AHAx = AHb for any initial guess x(0). In the case that x(0) ∈ Range(AH), the iterative method (2.2)
converges to x∗ = A+b. Furthermore, the optimal value of µ is given by

µopt =
2

σ̄2
min(A) + σ2

max(A)
,

where σ̄min is the smallest nonzero singular value of A.

Remark 2.4. We would like to point here that if the matrix A in the assumption of Theorem 2.3 has full column rank
then σ̄min = σmin(A). In this case the optimum value of µ is determined by

µopt =
2

σ2
min(A) + σ2

max(A)
,

which has been originally derived by Zhou et al. [29].

Remark 2.5. By Theorems 2.1 and 2.3, we may conclude the following two statements:
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• If the linear system (2.1) is consistent, i.e., b ∈ Range(A), the iterative method (2.2) converges to a solution of
(2.1).

• If the linear system (2.1) is inconsistent, i.e., b < Range(A), the iterative method (2.2) converges to a solution
of the least-squares problem

min
x∈Rn
‖b − Ax‖2 .

Let us assume that x( j) ∈ Range(AH), i.e., x( j) = AHw for some w ∈ Cm. Therefore, for the ( j + 1)th
approximate solution obtained by the the iterative method (2.2), we have

x( j + 1) = (I − µAHA)x( j) + µAHb
= (I − µAHA)AHw + µAHb
= AH((I − µAAH)w + µb) ∈ Range(AH).

By Remark 2.2, it can be deduced that the minimum norm solution is obtained by proper selection of the
initial guess x(0) so that x(0) ∈ Range(AH) for the two mentioned different cases in Remark 2.5. Without
loss of generality, we may set x(0) = 0.

3. An Iterative Algorithm for the Solution of Problem I (II)

In continuation, we concentrate on the solution of Problems I and II. Note that using the “vec(.)” operator,
we may equivalently rewrite (1.2) into the following linear system

M1X +M2X +M3X +M4X = F , (3.1)

where

X =


vec(X1)

...
vec(Xp)

 , F =


vec(F1)

...
vec(FN)

 ,

M1 =


BT

11 ⊗ A11 · · · BT
1p ⊗ A1p

BT
21 ⊗ A21 · · · BT

2p ⊗ A2p

...
. . .

...
BT

N1 ⊗ AN1 · · · BT
Np ⊗ ANp

 ,

M3 =


NT

11 ⊗M11 · · · NT
1p ⊗M1p

NT
21 ⊗M21 · · · NT

2p ⊗M2p

...
. . .

...
NT

N1 ⊗MN1 · · · NT
Np ⊗MNp

 ,

M2 =


(DT

11 ⊗ C11)P(n1,m1) · · · (DT
1p ⊗ C1p)P(np,mp)

(DT
21 ⊗ C21)P(n1,m1) · · · (DT

2p ⊗ C2p)P(np,mp)
...

. . .
...

(DT
N1 ⊗ CN1)P(n1,m1) · · · (DT

Np ⊗ CNp)P(np,mp)

 ,
and

M4 =


(GT

11 ⊗H11)P(n1,m1) · · · (GT
1p ⊗H1p)P(np,mp)

(GT
21 ⊗H21)P(n1,m1) · · · (GT

2p ⊗H2p)P(np,mp)
...

. . .
...

(GT
N1 ⊗HN1)P(n1,m1) · · · (GT

Np ⊗HNp)P(np,mp)

 .
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Consequently, we may consider the next two equivalent problems instead of our mentioned two main
problems. That is, we focus on Problems III and IV instead of Problems I and II, respectively.

Problem III. Suppose that the linear system (3.1) is consistent. Find the solution X̃ of (3.1) such that

‖X̃‖ = min{ ‖X‖ | M1X +M2X +M3X +M4X = F }.

Problem IV. Suppose that the linear system (3.1) is inconsistent. Find X̃ such that

‖X̃‖2 = min{ ‖X̂‖ | X̂ = argmin ‖F −
(
M1X +M2X +M3X +M4X

)
‖}.

Hence, we first present an iterative method based on the Richardson method for computing the solution
of Problem III (IV). Then the derived method is converted to an identical iterative method for solving
Problem I (II).

The (i, j)th block ofMµ is denoted by (Mµ)i j (µ = 1, 2, 3, 4) and given as follows:

(M1)i j = BT
ij ⊗ Ai j, (M2)i j = (DT

ij ⊗ Ci j)P(n j,m j),

(M3)i j = NT
ij ⊗Mi j, and (M4)i j = (GT

ij ⊗Hi j)P(n j,m j).

Using the properties of the Kronecker product and Theorem 1.2, we get

(M2)i j = (DT
ij ⊗ Ci j)P(n j,m j)

= P(ri, ki)T(Ci j ⊗DT
ij)P(m j,n j)P(n j,m j)

= P(ri, ki)T(Ci j ⊗DT
ij),

and similarly (M4)i j = P(ri, ki)T(Hi j ⊗ GT
ij).

For a given arbitrary matrix group W = [W1,W2, . . . ,WN], we set

W =
(
vec(W1)T,vec(W2)T, . . . ,vec(WN)T

)T
.

It can be verified that

(MH
1W)i = vec

 N∑
`=1

AH
`iW`BH

`i

 , (3.2)

(MH
2W)i = vec

 N∑
`=1

D`iWT
` C`i

 , (3.3)

(MH
3W)i = vec

 N∑
`=1

MT
`iW`NT

`i

, (3.4)

(MH
4W)i = vec

 N∑
`=1

G`iWH
` H`i

. (3.5)

Let us rewrite (3.1) in the real representation. As a matter of fact, the complex linear system (3.1) is
equivalent to the following linear system defined over real number field

U

(
X1
X2

)
=

(
F1
F2

)
, (3.6)
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where

U =

(
Re(M1 +M2) + Re(M3 +M4) −Im(M1 +M2) + Im(M3 +M4)
Im(M1 +M2) + Im(M3 +M4) Re(M1 +M2) − Re(M3 +M4)

)
,

and X1 = Re(X), X2 = Im(X), F1 = Re(F ) and F2 = Im(F ).
It is not difficult to see that

U
T =


Re(MH

1 +MH
2 ) + Re(MH

3 +MH
4 ) −Im(MH

1 +MH
2 ) + Im(MH

3 +MH
4 )

Im(MH
1 +MH

2 ) + Im(MH
3 +MH

4 ) Re(MH
1 +MH

2 ) − Re(MH
3 +MH

4 )

 .
For an arbitrary real vector of the form

R =

(
R1
R2

)
,

such that Ri =
(
(R(1)

i )T, (R(2)
i )T, . . . , (R(N)

i )T
)T

and R( j)
i ∈ R

r jk j for i = 1, 2 and j = 1, 2, . . . ,N. Our object is to
determineUT

R, i.e.,(
Y1
Y2

)
=UT

R.

In the sequel, assume that Ri =
(
R(1)

i ,R
(2)
i , . . . ,R

(N)
i

)
such that R( j)

i := unvec (R( j)
i ) for i = 1, 2 and j = 1, 2, . . . ,N.

By Eqs (3.2)-(3.5), we may deriveY1 andY2 as follows:

Y1 = Re(vec

 N∑
`=1

AH
`iR

(`)
1 BH

`i

) + Re(vec

 N∑
`=1

D`i(R
(`)
1 )TC`i

)

+ Re(vec

 N∑
`=1

MT
`iR

(`)
1 NT

`i

) + Re(vec

 N∑
`=1

G`i(R
(`)
1 )TH`i

)

− Im(vec

 N∑
`=1

AH
`iR

(`)
2 BH

`i

) − Im(vec

 N∑
`=1

D`i(R
(`)
2 )TC`i

)

+ Im(vec

 N∑
`=1

MT
`iR

(`)
2 NT

`i

) + Im(vec

 N∑
`=1

G`i(R
(`)
2 )TH`i

), (3.7)

and

Y2 = Im(vec

 N∑
`=1

AH
`iR

(`)
1 BH

`i

) + Im(vec

 N∑
`=1

D`i(R
(`)
1 )TC`i

)

+ Im(vec

 N∑
`=1

MT
`iR

(`)
1 NT

`i

) + Im(vec

 N∑
`=1

G`i(R
(`)
1 )TH`i

)

+ Re(vec

 N∑
`=1

AH
`iR

(`)
2 BH

`i

) + Re(vec

 N∑
`=1

D`i(R
(`)
2 )TC`i

)

− Re(vec

 N∑
`=1

MT
`iR

(`)
2 NT

`i

) − Re(vec

 N∑
`=1

G`i(R
(`)
2 )TH`i

). (3.8)
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Now Eqs (3.7) and (3.8) implies that

Y := Y1 + iY2 = vec

 N∑
`=1

AH
`i(R

(`)
1 + iR(`)

2 )BH
`i

 + vec

 N∑
`=1

D`i(R
(`)
1 + iR(`)

2 )TC`i


+ vec

 N∑
`=1

MT
`i(R

(`)
1 + iR(`)

2 )NT
`i

 + vec

 N∑
`=1

G`i

(
(R(`)

1 + iR(`)
2 )

)T
H`i

 . (3.9)

For solving Problem III and IV, we apply the Richardson iterative method to resolve the normal equations
associated with (3.6) as follows:(

X1(k + 1)
X2(k + 1)

)
=

(
X1(k)
X2(k)

)
+ µUT

((
F1
F2

)
−U

(
X1(k)
X2(k)

))
, k = 0, 1, 2, . . . .

Or equivalently, we may rewrite the recursive formula in the ensuing identical form(
X1(k + 1)
X2(k + 1)

)
=

(
X1(k)
X2(k)

)
+ µUT

(
R1(k)
R2(k)

)
, k = 0, 1, 2, . . . , (3.10)

where straightforward computations reveal that

R1(k) = Re(F −
(
M1X(k) +M2X(k) +M3X(k) +M4X(k)

)
),

and

R2(k) = Im(F −
(
M1X(k) +M2X(k) +M3X(k) +M4X(k)

)
).

By (3.9) and the recursive formula (3.10), we find the following recursive formula for solving Problems
I and II,

X`(k + 1) = X`(k) + µ

 N∑
`=1

AH
`iR`(k)BH

`i + D`i (R`(k))T C`i

+MT
`iR`(k)NT

`i + G`i (R`(k))H H`i

)
, ` = 1, 2, . . . ,N, (3.11)

for k = 0, 1, 2, . . . where X1(0),X2(0) are given arbitrary real vectors,

X(k) = unvec (X1(k) + iX2(k)) , k = 0, 1, 2, . . . ,

and

R`(k) = F` −

 p∑
i=1

A`iXi(k)B`i + C`iXi(k)TD`i + M`iXi(k)N`i + H`iXi(k)HG`i

 .
From Remark 2.2, for finding the minimum norm solution X̃ (solution of Problems III and IV), the initial
iterate X(0) = X1(0) + iX2(0) should be chosen such that(

X1(0)
X2(0)

)
∈ Range (UT).

From (3.9), we may conclude that the initial guess X(0) in (3.11) should be chosen such that

X(0) = unvec(X(0)) =

 N∑
`=1

AH
`iW`BH

`i + D`iWT
` C`i + MT

`iW`NT
`i + G`iWH

` H`i

 , (3.12)

for a given arbitrary matrix group W = (W1,W2, . . . ,WN).
In view of Theorem 2.3, we may instantly conclude the following two theorems.
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Theorem 3.1. Suppose that (1.2) is consistent. Presume that

0 < µ <
2

σ2
max(U)

, (3.13)

where σmax is the largest singular value of U. Then, the sequence of approximate solutions produced by recursive
formula (3.11) converges to a solution of (1.2) for any initial guess X(0). In the case that X(0) is chosen of the form
(3.12), then the iterative method defined by (3.11) converges to the solution of Problem I. Furthermore, the optimal
value of µ is given by

µopt =
2

σ̄2
min(U) + σ2

max(U)
, (3.14)

where σ̄min is the smallest nonzero singular value ofU.

Theorem 3.2. Suppose that (1.2) is not consistent. Presume thatµ satisfies (3.13). Then, the sequence of approximate
solutions produced by recursive formula (3.11) converges to a solution of the subsequent least-squares problem

min ‖F −A(X)‖,

for any initial guess X(0). Moreover assume that X(0) is chosen of the form (3.12), then the iterative method defined
by (3.11) converges to the solution of Problem II. Furthermore, the optimal value of µ is obtained by (3.14).

4. Numerical Experiments

In this section, we examine some numerical experiments to illustrate the effectiveness of the proposed
algorithm and the presented theoretical results. All the reported numerical experiments in this section were
computed in double precision with some Matlab codes.

Example 4.1. In this example we mention the matrix equation

A11X1B11 + C11XT
1 D11 + M11X1N11 + H11XH

2 C11 = F1, (4.1)

where

A11 =

(
−2 − 2i 2 + 2i

1 − i −2 − 1i

)
, B11 =

(
0 1 + 3i
0 5 − 10i

)
, C11 =

(
5 + 3i 2 − i
4 − 2i 1 + 2i

)
,

D11 =

(
0 2 − 5i
0 4i

)
, M11 =

(
2 − 3i 3 + 5i

0 0

)
, N11 =

(
6i 1 + 3i
−1 + i −1 + 4i

)
,

G11 =

(
5i i

3 + 4i 2 + i

)
.

We consider following three cases for the matrices H11 and F1:

Case 1.

H11 =

(
2 + 3i 3i

0 10i

)
and F1 =

(
−52 + 248i −72 + 240i
−10 + 70i −59 − 115i

)
;

Case 2.

H11 =

(
2 + 3i 3i

0 0

)
and F1 =

(
−52 + 248i −72 + 240i

0 −99 − 135i

)
;
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Case 3.

H11 =

(
2 + 3i 3i

0 0

)
and F1 =

(
−1 − 5i −11 − 6i
10 − i −12 − 3i

)
.

It is easy to verify that the matrix

X∗1 =

(
2 − 2i 2 − i
2 + 2i 3i

)
, (4.2)

is a solution of Eq. (4.1) for both of the Cases 1 and 2. We apply the iterative method given by (3.11) to
solve Eq. (4.1). We use a null matrix as an initial guess and

δk =
‖R1(k)‖
‖R1(0)‖

< 10−7,

as the stooping criterion for the Cases 1 and 2, where R1(k) is the residual matrix at kth iteration.
In Case 1, it can be seen that the correspondingU appeared in Eq. (3.6) is a nonsingular 8-by-8 matrix.

Therefore, system (3.6) and as a result system (4.1) has a unique solution given by (4.2). According to
Theorem 3.1, the iterative method (3.11) converges to the exact solution X∗1 if

0 < µ < 1.9328 × 10−4.

Moreover the optimum value of µ is given by

µopt = 1.7378 × 10−4.

In Figure 1, the convergence history of the method for three values µopt, µ = 1.0 × 10−4 and µ = 1.9 × 10−4

are depicted where the method converges, respectively, in 71, 119 and 463 iterations. As seen, the best
convergence curve corresponds to µopt among the chosen values for µ.

Now, we consider the second case. It is straightforward to see that the corresponding U is an 8-by-8
matrix with rank(U) = 6. This means that Eq. (3.6), and as a result system (4.1), has infinitely number of
solutions. Hence, if the assumptions of Theorem 3.1 hold, then the proposed iterative method converges
to a solution of the given matrix equation for any initial guess. According to Theorem 3.1, the convergence
interval for µ is

0 < µ < 1.9280 × 10−4.

Moreover the optimum value of µ is given by

µopt = 1.6845 × 10−4.

In Figure 2, the convergence history of the method for three values µopt, µ = 1.0 × 10−4 and µ = 1.9 × 10−4

are depicted where the method converges, respectively, in 55, 92 and 542 iterations. As observed, the least
number of iterations is due to µopt between the chosen values for µ. It is necessary to mention that the
method with the optimum value converges to the solution

X(55) =

(
1.7447 − 2.1364i 1.8825 − 0.5580i
1.9696 + 1.8761i −0.0606 + 3.2778i

)
,

which is different from X∗1.
Finally, we consider Case 3. Since the left-hand side of (4.1) for both Cases 2 and 3 are the same, we see

that the matrix U is not of full rank. It is not difficult to check that the system (4.1) (as a result Eq. (3.6))
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Figure 1: log10 δk for Example 4.1 in Case 1 (system (3.6) is consistent andU is of full rank).

is inconsistent. Therefore, we look for the solution of Problem II. We apply the proposed iterative method
with a null matrix as an initial guess and

δk = ‖X(k) − X(k − 1)‖F < 10−7,

as the stopping criterion. Obviously, the range of the parameter µ and its optimal value are as Case 2. In
Figure 3, the convergence history of the method for three values of µ, i.e., µ = µopt, µ = 1.5 × 10−4 and
µ = 1.8 × 10−4 has been displayed. For these values of µ, the method converges in 48, 54 and 90 iterations,
respectively. With µ = µopt the obtained solution is

X(48) =

(
−0.0645 − 0.3148i 0.0808 − 0.1287i
−0.1723 + 0.0554i 0.0253 + 0.0365i

)
.

This is the solution of Problem II corresponding to (4.1) (least squares solution of (3.6)) which confirms the
presented results in Theorem 3.2 .

Example 4.2. In this example, we consider the coupled linear matrix equations A11X1B11 + C11XT
1 D11 + M12X2N12 + H12XH

2 G12 = F1,

A21X1B21 + C21XT
1 D21 + M22X2N22 + H22XT

2 G22 = F2,
(4.3)

where

A11 =

(
−1 − 2i 2 + 2i
−6i −2 − 3i

)
, B11 =

(
9i 1 + 3i
0 5 − i

)
, C11 =

(
8i9i 2 − i

1 − 4i 3 + i

)
,
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Figure 2: log10 δk for Example 4.1 in Case 2 (system (3.6) is consistent, butU is not of full rank).
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Figure 3: log10 δk for Example 4.1 in Case 3 (system (3.6) is not consistent).
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D11 =

(
1 2 − 5i
−9 i

)
, M12 =

(
0 3 + i
0 1 − i

)
, N12 =

(
2 − 1i 1 + 3i
10 + i −2 − i

)
,

H12 =

(
5i 0
0 0

)
, G12 =

(
1 − i i
3 − i 2 + i

)
, A21 =

(
−2 − 6i 4 + 2i

1 − i −2 − 2i

)
,

B21 =

(
2i 1 − 3i

1 − i 1 + i

)
, C21 =

(
−2i 2 + i
0 −1 + 2i

)
, D21 =

(
2 − i 2 + 5i
−7i 1 + i

)
,

N22 =

(
5 − 6i 4 + 3i

3i −9i

)
, H22 =

(
−5 − 9i 0

0 0

)
, G22 =

(
0 5i

3 − i 4 − 2i

)
.

We set following three cases for M22, F1 and F2.

Case 1.

M22 =

(
−1 + 9i 1 − 2i

3 5 − 4i

)
,

F1 =

(
135 − 192i 32 − 11i

51 − 87i 144 − 57i

)
and F2 =

(
−13 − 183i 98 − 112i
122 − 86i −193 − 57i

)
;

Case 2.

M22 =

(
0 3 + i
0 1 − 6i

)
,

F1 =

(
135 − 192i 32 − 11i

51 − 87i 144 − 57i

)
and F2 =

(
46 − 82i −126 − 162i
29 − 135i −103 + 85i

)
;

Case 3.

M22 =

(
0 3 + i
0 1 − 6i

)
,

F1 =

(
−5 − i 3 − 2i
−6 −1 − 2i

)
and F2 =

(
2i i
5i 3 − 3i

)
;

It is not onerous to check that in both of the Cases 1 and 2, (X∗1,X
∗

2) is the solution of (4.3) where

X∗1 =

(
1 − i 1 + 3i
2 + i 1 + i

)
and X∗2 =

(
i 2 + i

2 − i 2 + 3i

)
. (4.4)

This shows that in both of these cases the system (4.3) is consistent. We use null matrices as the initial guess
and

δk = max{
‖R1(k)‖
‖R1(0)‖

,
‖R2(k)‖
‖R2(0)‖

} < 10−7,

as the stoping criterion for the Cases 1 and 2 where R1(k) and R2(k) are the residual matrices at kth iteration.
We first consider Case 1. It is easy to see that the correspondingU appeared in Eq. (3.6) is a nonsingular

16-by-16 matrix. Therefore both of the systems (3.6) and (4.3) have a unique solution given by (4.4).
According to Theorem 3.1, the iterative method (3.11) converges to the exact solution (X∗1,X

∗

2) if

0 < µ < 1.6332 × 10−4.
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In addition, the optimum value of µ is given by

µopt = 1.5403 × 10−4.

In Figure 4, the convergence history of the method for three values µopt, µ = 1.58 × 10−4 and µ = 1.35 × 10−4

are represented where the method converges in 114, 199 and 128 iterations , respectively. As seen, the best
convergence curve is occurred for µopt among the different chosen values for µ.

Now, we mention Case 2. In this case, it is easy to see that the corresponding U is an 16-by-16 matrix
with rank(U) = 14. This means that Eq. (3.6), and as a result system (4.3), has infinitely number of solutions.
Hence, if the assumptions of Theorem 3.1 hold, then the proposed iterative method converges to a solution
of the given matrix equation for any initial guess. According to Theorem 3.1, the convergence interval for
µ is

0 < µ < 2.1538 × 10−4.

Moreover the optimum value of µ is given by

µopt = 1.9619 × 10−4.

In Figure 5, the convergence history of the method for three values µopt, µ = 1.6 × 10−4 and µ = 2.05 × 10−4

are illustrated where the method converges in 77, 93 and 146 iterations, respectively. As observed, the least
number of iterations belongs to µopt in comparison with different choices of µ. It is necessary to consider
that the method with the optimum value converges to the solution

X̂1 =

(
1 − i 1 + 3i
2 + i 1 + i

)
and X̂2 =

(
i 0

2 − i 2 + 3i

)
,

which is different from (X∗1,X
∗

2). In other words, the method has converged to another solution of (4.3).
At last, we consider Case 3. Since the left-hand side of the system (4.3) in the Cases 1 and 2 are the same,

we observe that the correspondingU is an 16-by-16 matrix with rank(U) = 14. However, it is not difficult
to verify that with the chosen right-hand side (F1,F2), system (4.3) is not consistent. Therefore, we look for
the solution of Problem II. We apply the proposed iterative method with null matrices as the initial guess
and

δk = max{‖X1(k) − X1(k − 1)‖, ‖X2(k) − X2(k − 1)‖} < 10−7,

as the stopping criterion. Evidently, the range of the parameter µ and its optimal value are as Case 2. In
Figure 3 the convergence history of the method for three values of µ, i.e., µ = µopt, µ = 1.7 × 10−4 and
µ = 2.05 × 10−4 has been depicted. For these values of µ, the method converges, respectively, in 65, 75 and
113 iterations. With µ = µopt the computed solution is given by (X1(65),X2(65)) where

X1(65) =

(
−0.0329 − 0.0205i 0.0183 + 0.0247i
−0.0124 + 0.0068i 0.0928 + 0.0098i

)
,

and

X2(65) =

(
−0.0017 + 0.1390i 0
−0.0908 + 0.0379i −0.1001 − 0.0704i

)
,

which is the solution of Problem II corresponding to (4.1) (least squares solution of (3.6)).
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Figure 4: log10 δk for Example 4.2 in Case 1 (system (3.6) is consistent andU is of full rank).

0 50 100 150
−8

−7

−6

−5

−4

−3

−2

−1

0

iterations

lo
g 10

 δ
k

µ
opt

  = 1.9619e−4

  µ    = 1.6000e−4 

  µ    = 2.0500e−4

Figure 5: log10 δk for Example 4.2 in Case 2 (system (3.6) is consistent, butU is not of full rank).
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Figure 6: log10 δk for Example 4.2 in Case 2 (system (3.6) is not consistent).

5. Conclusion

The convergence of the gradient-based algorithm together with determining its best convergence factor
have been studied to compute the minimum norm (least-squares) solution of the general complex of the
(in)consistent coupled matrix equations. Our main inspiration to discuss the convergence of the algorithm
for the mentioned problems was the restrictions in the assumptions of the research works published in
the discipline of the application of the algorithm to solve the considered problems and their special cases.
The optimal convergence factor of the algorithm has been also derived which was not obtained without
setting the refereed restrictions so far. As a matter of fact, the presented results in this work have elaborated
for more general situations which left as a subject to be investigated in the previously published research
papers in the literature.
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